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INTRODUCTION

Management measures for endangered or threat-
ened marine populations often rely on an under-
standing of a species’ distribution and habitat use to

identify overlap with potential sources of mortality.
For highly migratory species such as loggerhead sea
turtles Caretta caretta, the range of threats encoun-
tered shifts with habitats occupied seasonally and
over the course of migration (Gardner et al. 2008,
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ABSTRACT: Movement and location data collected via satellite-linked telemetry tags are often
used to inform spatial conservation measures for threatened marine populations. Most applied
telemetry studies aim to reconstruct the continuous utilization distribution underlying reported
locations to characterize the relative intensity of space use. However, commonly applied space use
estimators do not directly estimate the underlying distribution of interest and, perhaps more
importantly, ignore correlations in space and time that may bias estimates. Here we describe how
geostatistical mixed effects models, which explicitly account for spatial and/or temporal correla-
tion using Gaussian random fields, can be applied to estimate utilization distributions from satel-
lite telemetry data. We use simulation testing to compare the performance of the proposed models
with several conventional space use estimators. Our results suggest that geostatistical mixed
effects models outperform conventional estimators when the number of tag transmissions changes
over time, a common source of bias in satellite telemetry studies that is rarely addressed. We illus-
trate this approach via application to satellite telemetry location observations collected from 271
large juvenile and adult loggerhead sea turtles in the western North Atlantic from 2004 to 2016.
We demonstrate how such models can be used to predict the overall spatial distribution of tagged
individuals, as well as seasonal shifts in densities at smaller time scales. For tagged loggerheads,
overall predicted densities were greatest in the shelf waters along the US Atlantic coast from
Florida to North Carolina, but monthly predictions highlight the importance of summer foraging
habitat in the Mid-Atlantic Bight.
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Finkbeiner et al. 2011, Lewison et al. 2014). Conse-
quently, the effectiveness of management actions
hinges on knowing where the species is likely to
occur at any given point in time (Maxwell et al. 2011).
Estimates of the relative density and distribution of
large-bodied, obligate air-breathers such as sea tur-
tles and marine mammals are often based on data
collected during shipboard or aerial line transect sur-
veys, which generally cover large geographic areas
annually (Moore & Barlow 2013). Given the migra-
tory habits of loggerheads (Griffin et al. 2013), the
data generated during these surveys do not provide a
sufficient basis for estimating the dynamic distribu-
tion of the species over the course of the year.

Data collected via satellite-linked telemetry tags
are increasingly used to describe the distribution and
migratory habits of marine turtle species (Godley et
al. 2008). Satellite tags transmit signals that can be
detected by overhead satellites when exposed to air,
enabling geolocation of a tagged individual’s loca-
tion (CLS-Argos 2015). In contrast to infrequent, dis-
continuous line transect surveys, satellite tags can be
programmed to sample turtle behavior every day of
the year, and can represent the location of animals
even as transient relationships with the environment
(e.g. salinity, depth) change with physiological
demands imposed by migration and fluctuating food
sources. Most applied telemetry studies attempt to
characterize space use by reconstructing the under-
lying spatial probability distribution (typically
referred to as the utilization distribution; Van Winkle
1975) from available discrete location observations.
Though this is their implicit aim, the most commonly
applied space use estimators (i.e. kernel density esti-
mators and minimum convex polygons; Calenge
2006) do not directly estimate the underlying contin-
uous process of interest. Instead, they bound or
smooth over the distribution of reported locations to
approximate the underlying distribution, precluding
predictive inference (Diggle et al. 2013).

Perhaps more importantly, conventional estimators
weight each observed location equally, ignoring cor-
relations in space and time that have the potential to
bias estimates of space use (Whitehead & Jonsen
2013, Fleming et al. 2015). Receipt of satellite tag
transmissions is limited by battery life and other
sources of signal loss (e.g. biofouling; Hays et al.
2007) and varies with seasonal shifts in behavior (e.g.
increased dive times during winter or basking during
summer; Hays et al. 1999). As a result, the number of
estimated locations received from tagged individuals
changes, and generally decreases, over time. Thus,
estimates of the relative intensity of space use gener-

ated using conventional methods are often biased
towards the time and location of tagging operations,
where the number of reported locations is typically
greatest (Whitehead & Jonsen 2013). This issue and
its potential ramifications have been largely ignored
in studies describing marine animal densities from
tagging data (though see Whitehead & Jonsen 2013),
in part due to a lack of analytical techniques avail-
able to address this source of bias.

Spatiotemporal point process models have recently
been proposed as a means to estimate spatial distri-
butions from satellite telemetry data while account-
ing for temporal autocorrelation (Johnson et al.
2013). Conceptually, this approach considers the
density of reported locations as a discrete realization
of an underlying, spatially continuous but varying
(i.e. inhomogeneous) intensity function that shifts
over time (Aarts et al. 2012, Johnson et al. 2013, Thor-
son et al. 2016). Existing applications have focused
on modeling the spatial intensity of the point process
as a function of spatially referenced covariates (John-
son et al. 2013), which may not adequately account
for the correlation structure of the data if a critical
covariate is omitted. Geostatistical mixed effects
models (also referred to as log Gaussian Cox pro-
cesses; Diggle et al. 2013), which model point process
intensity as a function of spatial random effects using
Gaussian random fields, can be used to characterize
the latent spatial structure without the need to spec-
ify covariates. These models are rooted in well-estab-
lished generalized linear mixed modeling techniques
(McCullagh & Nelder 1989, Pinheiro & Bates 2000),
but explicitly account for spatial and/or temporal cor-
relation by specifying that values sampled closely
together in time or space are more similar than those
sampled further apart. Shifts in distributions over
time can be accounted for by the inclusion of addi-
tional random fields (Thorson et al. 2016), providing a
theoretical basis for estimating the ‘overall’ spatial
distribution underlying reported locations by inte-
grating over time (Johnson et al. 2013).

Here, we apply geostatistical mixed effects models
to estimate the distribution and relative density of
tagged juvenile and adult loggerhead sea turtles in
the western North Atlantic from satellite telemetry
data collected from 2004 to 2016. After describing the
loggerhead sea turtle data set, we review how con-
ventional generalized linear models for counts can be
extended to estimate both latent spatial and spa-
tiotemporal variation in reported locations using
Gaussian random fields. We then use simulation test-
ing to compare the performance of space-time geo-
statistical mixed ef fects models with several com-
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monly applied space use estimators and evaluate
biases in the resulting estimates of space use. Finally,
we apply a space- time geostatistical mixed effects
model to estimate the relative density of 271 tagged
loggerheads in the western North Atlantic and
demonstrate how the full space-time model can be
used to predict the overall spatial distribution, as well
as seasonal shifts in densities.

METHODS

Loggerhead sea turtle tracking data

We used data from 271 satellite tags deployed on
large juvenile and adult loggerheads in the north-
west Atlantic by 6 tagging programs between 2004
and 2016 (Table 1). The specific tag model, set-up,
and attachment method varied among the 6 tagging
programs (see Haas et al. 2010, 2013, 2014, Weeks et
al. 2010, Northeast Fisheries Science Center 2011,
Arendt et al. 2012a−c, Coonamessett Farm Founda-
tion 2012, 2013, Haas & Smolowitz 2012, Valenti &
Smolowitz 2014, Cholewiak et al. 2015, Patel et al.
2015, 2016 and Barco & Lockhart 2017 for details of
specific programs), but all tags transmitted location
data via the Argos satellite system (CLS-Argos 2015).
All but 17 of the turtles were wild-caught and tagged
during the course of directed research; data from 15
tags deployed on rehabilitated turtles and 2 on log-
gerheads incidentally captured in pound nets that
ex hibited typical regional movements following
release were also included. Tagging operations were
conducted under appropriate permits (Coonamessett
Farm Foundation and Northeast Fisheries Science
Center: 1551, 1576, 14249, 16556, 18526; Fisheries
and Oceans Canada: FRN-M-15-07; South Carolina
Department of Natural Resources: 1540, Florida Mar-
ine Turtle Permit 163; Southeast Fisheries Science
Center: 1551; Virginia Aquarium & Marine Science
Center: 16134) following protocols detailed in reports
(cited above) of each tagging program. Data col-
lected from a subset of the tags deployed have been
previously published in Arendt et al. (2012a−c) and
Northeast Fisheries Science Center & Southeast Fish-
eries Science Center (2011).

Turtle locations were processed following standard
guidelines for sea turtle tracking. Given the error
associated with each Argos location, tracks of indi-
vidual turtles were filtered based on a continuous-
time correlated random walk model (Johnson et al.
2008, Albertsen et al. 2015), which describes the
movement process as a function of the instantaneous
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velocity of the animal in each time step (see the
 Supplement at www. int-res. com/ articles/ suppl/ m586
p217 _ supp. pdf for details). Models were fitted to
location data using functions modified from those
provided by Albertsen al. (2015) in the software Tem-
plate Model Builder (TMB; Kristensen et al. 2016), a
recently developed package for R statistical software
(R Core Team 2016) that makes use of automatic dif-
ferentiation and Laplace approximation to efficiently
fit complex random effects models. Prior to fitting, all
location coordinates were re-projected into the ob -
lique Mercator center projection centered on 35.0° N,
75.0° W using the R package ‘rgdal’ (Bivand et al.
2015).

Reconstructed tracks were then linearly inter -
polated onto a daily time step using the R package
‘adehabitatLT’ (Calenge 2006). This ‘thinning’ step
was performed to avoid bias that may result from
variation in tag duty cycles (Table 1) and for consis-
tency with previous loggerhead tagging studies
(TEWG 2009, Arendt et al. 2012a−c, Griffin et al.
2013). To avoid interpolating across areas and time
periods without observations, individual tracks with
position estimates separated by more than 3 d in time
(the length of the longest ‘off’ period for tags that
were duty cycled; Table 1) were divided into multi-
ple, unlinked track segments. The resulting tracks
thus represent daily turtle positions during each
observation period (TEWG 2009).

Estimating relative densities using geostatistical
mixed effects models

Our goal was to model spatial variation in the rela-
tive density of tagged juvenile and adult loggerheads
over the course of the year in a way that would
account for both the underlying correlation structure
of telemetry data as well as the fact that the number
of transmissions changed over time. Geostatistical
mixed effects models, the approach we use here,
have been described in detail elsewhere (Lindgren et
al. 2011, Thorson et al. 2015, 2016) and so we provide
only a brief review. We start with a Poisson general-
ized linear model (GLM) with a log link function to
estimate the density of reported locations at a given
site i (though other plausible distributions and link
functions could also be applied). The notation we use
here follows Thorson et al. (2015). We assume that ni,
the number of observed telemetry locations at site i,
follows a Poisson distribution with mean and vari-
ance λi:

ni ~ Poisson(λi) (1)

In the simplest case, the number of locations re -
ported at each site can be estimated as:

log(λi) = β0 + log(ai) (2)

where β0 is an intercept term representing the mean
number of locations and ai is the area associated with
each site, which is included as an offset term to scale
the expected counts into densities.

The above formulation implies that the densities of
reported locations at each site are independent of
those at all other sites and that the mean density is
constant over time. However, we expect that densi-
ties at a given site will be more similar to those at
neighboring sites than at distant sites. The above
Poisson GLM can be extended using a Gaussian ran-
dom field (GRF), to allow for this latent spatial varia-
tion between sites, s:

log(λi) = β0 + log(ai) + Ω(si). (3)

Here Ω denotes the GRF allowing for spatial varia-
tion in the expected number of reported locations at
site i, which follows a mean-zero multivariate normal
distribution: 

(4)

where σ2
Ω is the marginal variance of Ω. Cd is the spa-

tial correlation function between locations separated
by a Euclidean distance of d, which is specified as a
Matérn function with a smoothness parameter, ν,
equal to 1 and a scaling parameter, κ, which is esti-
mated (Lindgren et al. 2011). Together, these 2 terms
represent the spatial covariance among locations,
which we here assume to be isotropic (i.e. equal in
both the north−south and east−west directions). The
spatial correlation range (i.e. the distance at which
observations can be considered approximately inde-
pendent), ρ, can be empirically derived as 
(Lindgren et al. 2011).

For migratory animals like loggerheads, we also
expect that regions of high density will shift over the
course of the year. To account for temporal variation
in the spatial distribution, the above model can be
extended with a second GRF representing variation
in Ω at time step t, denoted by Et:

log(λi,t) = β0 + log(ai) + Ω(si) + Et(si), (5)

where, as for Ω, Et is assumed to follow a multivariate
normal distribution with mean zero and spatial co -
variance given by σ2

ECd. Note that this specification
implies that the correlation distance is stationary and
time-invariant. As formulated here, Ω represents the
marginal spatial distribution of the density field inte-
grated over all time steps. That is, Ω provides an esti-

Ω Ω~ )multivariate normal(0,σ2 Cd

8 / κ
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mate of the ‘overall’ spatial trend while accounting for
changes in the spatial distribution over time. Shifts in
time are represented as differences from the ‘overall’
spatial field (Ω) at each of t time steps. Using this ap-
proach, the time of tag transmissions is also considered
random (Johnson et al. 2013, Thorson et al. 2016),
which is appropriate when changes in transmission
rates cannot be directly modeled (e.g. when transmis-
sion rates change due to unobservable changes in
 animal behavior or tag status), as is the case here.

Parameter estimation and spatial prediction

Variations in space and time are treated as random
effects and are estimated using a stochastic partial
differential equation approximation approach, which
approximates a continuous GRF using a Gaussian
Markov random field (see Lindgren et al. 2011 for
details). In short, the approach approximates the full,
continuous spatial field using weighted sums of
piecewise linear basis functions, which are defined
over the region of interest on a triangulated mesh
(Lindgren et al. 2011); we use the R-INLA software to
calculate the mesh and the sparse matrices used for
this approximation (see Lindgren et al. 2011 and
Lindgren & Rue 2015 for full details on mesh con-
struction and the approximation). While each tele -
metry location could be specified as a mesh node, in
most telemetry applications the large number of loca-
tions available will render such an approach compu-
tationally infeasible (Banerjee et al. 2008). For all
simulations and applications conducted here, we use
a predictive process approach, where spatial and
seasonal fields are approximated at a series of grid-
ded ‘knots’ (rather than at all available locations) to
reduce dimensionality (Banerjee et al. 2008). We use
the R package TMB (Kristensen et al. 2016) to esti-
mate fixed effects parameters via non-linear opti-
mization of the maximum marginal likelihood, which
integrates across random effects using the Laplace
ap proximation. The estimated fixed and random
effects are then used to predict the distribution and
relative density at each location within the study
area. Readers interested in further details regarding
the statistical theory underlying the models and spe-
cific details related to the spatial approximation and
computational approaches are referred to Lindgren
et al. (2011), Lindgren & Rue (2015), and Thorson et
al. (2015). Code for fitting the models described here
and conducting the simulations described below is
provided on the first author’s publicly available
GitHub page (https://github.com/meganwinton).

Simulation testing

To test the performance of the spatiotemporal mod-
els described above when the number of tag trans-
missions changes over time, we conducted a simula-
tion study. We used the space-time geostatistical
mixed effects model and the R package ‘Random-
Fields’ (Schlather et al. 2015) to generate a continu-
ous density field over a 30 × 30 unit-square grid
assuming a mean intensity (β0) of 0.05 reported loca-
tions per grid cell and a spatial GRF, Ω, with a mar-
ginal variance of 1 (σ2

Ω = 1.0) and a spatial range, ρ, of
15 grid cells. Shifts in densities over the course of 4
time steps (hereafter referred to as ‘seasons’) were
simulated by the addition of a second GRF (Et as
described above) with σ2

E = 1.0 and ρ = 15 grid cells.
We could have assumed that reported locations

are generated as the realization of a Poisson process
arising from each seasonal intensity field; however,
this approach would not appropriately represent the
serial correlation inherent in position estimates and
ignores preferential selection of resources at the
individual level. To account for this, we simulated
the movement of 1 individual for 500 steps on each
of the 4 seasonal fields using a Metropolis−Hastings
in spired algorithm (Hastings 1970). The starting
grid cell of each individual track was selected based
on a random draw from a uniform distribution of
grid cells. At each subsequent step, a grid cell
within 2 cells of the current position was randomly
selected; boundary effects were imposed by specify-
ing that grid cells along the border were reflective.
If the value of the underlying random field in the
proposed grid cell was greater than that in the cur-
rent grid cell, the individual moved to the new cell;
to reflect searching behavior, movement also oc -
curred if the value of the field in the current cell
was less than the median of the entire field. If nei-
ther of those conditions were satisfied but the value
in the proposed grid cell was at least half that of the
current grid cell, the individual moved to the new
cell with probability equal to the ratio of the values
of the proposed and current cells. Within each grid
cell, the position of each reported location was
determined based on random draws from 2 uniform
distributions representing variation in the east−west
and north−south direction. To simulate decreasing
numbers of transmissions over time, a subset of the
generated locations was removed in the second
(25%), third (50%), and fourth seasons (75%). The
intensity of the simulated locations shifted in space
and differed between seasons, which is typical of
satellite tagging data.
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We then applied the space-time geostatistical
mixed effects model to the simulated location data to
assess how well it recovered the underlying spatial
field generating the observations. When fitting the
space-time geostatistical mixed effects model, it was
assumed that the 4 seasonal time steps were appro-
priately identified prior to fitting. Space-time models
were fitted using functions modified from those pro -
vided in the supplementary material of Thorson et al.
(2015) using the estimation methods described above.

We also applied 4 alternative space use estimators
to compare their performance to that of the geostatis-
tical mixed effects model: (1) the minimum convex
polygon (Mohr 1947); (2) the conventional kernel den-
sity method (Worton 1989); (3) simple track densities;
and (4) the Markov chain approach (Whitehead &
Jonsen 2013). A brief description of each is provided
here, but interested readers should consult the cited
references for further details. Minimum convex poly-
gons, which are the smallest possible convex polygon
containing a specified proportion of the available
telemetry locations (e.g. 50%), were estimated using
functions in the R package ‘ade habitatHR’ (Calenge
2006). Conventional kernel density estimates were
generated using default function settings in the same
package; the approach estimates a bivariate kernel
function over each location and averages the values of
these functions over space (Calenge 2006). Track den-
sities were estimated by summing the number of ob-
served locations in each grid cell and dividing by the
total number of locations; this corresponds to the sim-
plest approximation of a multinomial resource selec-
tion function (Mc Cracken et al. 1998). We also applied
the Markov chain approach of Whitehead & Jonsen
(2013), which can be used to produce unbiased meas-
ures of relative density from animal tracking data
when movements among cells can be considered as a
time-homogenous Markov chain.

We fit each of the 5 space use estimators consid-
ered to 100 simulated datasets. For comparison pur-
poses, the simulated densities and the densities esti-
mated using each method were scaled from 0 to 1 by
conditioning the density in each grid cell on the total
density generated using that method (i.e. the sum of
the densities in all grid cells). The performance of
each estimator was assessed by comparing the sum
of absolute errors between estimators; error values
were calculated by subtracting the value of the true
underlying field in each grid cell from that estimated
using each of the 5 methods in each iteration. We also
compared the error in the area and percent overlap
of the region corresponding to the smallest area
encompassing 50% of the resulting probability distri-

bution with that of the true underlying density field.
This corresponds to the 50% home range metric
often used to identify core use areas when conven-
tional methods are applied (Calenge 2006). For each
estimation method, the error in area was calculated
as the difference between the number of grid cells
included in the resulting core use area and that in -
cluded in the true simulated field.

Method comparison via application to an
 individual loggerhead track

To illustrate how predictions from the space–time
geostatistical mixed effects model differ from con-
ventional methods when applied to an actual track,
we applied each of the 5 space use estimators tested
during the simulation study to locations reported
from a 74 cm (curved carapace length) loggerhead
that was tagged in the Mid-Atlantic Bight (MAB) in
May 2012. This track was selected because the tag
reported for almost an entire year (reporting 2061
locations until transmission ceased in May 2013) and
captured the turtle’s movements on summer foraging
grounds in the MAB as well as the area in which it
overwintered south of Cape Hatteras, North Car-
olina. Locations were binned by month (the time step
we have found is most often requested by managers)
and aggregated over the 10 km resolution Atlantic
Marine Assessment Program for Protected Species
(AMAPPS) spatial grid (area of each grid square =
100 km2) in R using the ‘sp’ (Pebesma & Bivand 2005,
Bivand et al. 2013) and ‘raster’ packages (Hijmans
2015). The AMAPPS grid was boun ded by the coast-
line to constrain the loggerhead’s space use to the
ocean. To estimate the relative in tensity of space use,
a space–time geostatistical mixed effects model was
fitted to counts of reported locations on a monthly
time step as described above. The other 4 space use
estimators were applied to aggregate locations on
the AMAPPS spatial grid. The resulting densities
from each method were scaled from 0 to 1, and the
50% core use area estimated as described for the
simulations above.

Application to loggerhead tracking data

To estimate the relative density of the 271 tagged
loggerheads over the course of the year, we fitted a
space–time geostatistical mixed effects model to
counts of daily loggerhead positions on a monthly
time step. Under the assumption that tracks of indi-
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vidual turtles represent independent Poisson pro-
cesses, a model for multiple individuals can be ob-
tained by pooling data; a combination of indepen dent
Poisson processes is also a Poisson process (Johnson
et al. 2013). To account for differences in the duration
of tag transmission between turtles, individual tracks
in each month were weighted inversely according to
the number of days transmitting. Daily weighted loca-
tion estimates were binned by month and aggregated
over a 40 km resolution version of the AMAPPS
spatial grid (area of each grid cell = 1600 km2) in R us-
ing the ‘sp’ (Pebesma & Bivand 2005, Bivand et al.
2013) and ‘raster’ packages (Hijmans 2015); given the
broad geographic scale of interest for this application,
we chose to use the larger resolution grid to speed
computation time. Though several tagged turtles ven-
tured into the Gulf of Mexico or further north, we only
considered locations reported north of 25.0° N, south
of 41.5° N, east of 81.5° W, and west of 65.0° W, which
encompassed the area with the highest track densities.
Prior to fitting, all location coordinates were re-pro-
jected into the oblique Mercator center projection
centered on 35.0° N, 75.0° W using the R package
‘rgdal’ (Bivand et al. 2015).

Given the absence of data definitively indicating
differences in the regional abundance of logger-
heads at the time of tagging (Northeast Fisheries Sci-
ence Center & Southeast Fisheries Science Center
2011), as well as differences in the number of tags
deployed in the MAB and South Atlantic Bight (SAB)
(Table 1, Fig. 1), we chose to weight tracks from tags
deployed north and south of Cape Hatteras, North
Carolina, equally. While 6 individual tagging pro-
grams were involved, there was a broad degree of
overlap in the timing and location of tag deployments
in the MAB and SAB due to collaborations between
the Northeast Fisheries Science Center, Coonames-
sett Farm Foundation, and the Virginia Aquarium in
the MAB, and between the Southeast Fisheries Sci-
ence Center and the South Carolina Department of
Natural Resources in the SAB (Fig. 1). To account for
differences in the number of tag deployments
between regions, the individually weighted tracks
from turtles tagged in the SAB were scaled by the
ratio of the number of daily locations available for
turtles tagged in the MAB (which were higher in all
months) to the number available for the SAB in each
month; this gave equal weight to tags deployed in
each region in each month. Tags de ployed on or near
Georges Bank were included with those deployed in
the MAB due to low sample size (n = 5). A space-time
geostatistical mixed effects model was fitted to the
weighted dataset in R (R Core Team 2016) and TMB

(Kristensen et al. 2016) as described above. Values
for each monthly predicted field were scaled from 0
to 1 by conditioning the predicted value in each grid
cell on the summed total in that month. Scaled fields
were used to visualize the overall and monthly spa-
tial distribution of tagged loggerheads over the 40 km
resolution AMAPPS grid.

RESULTS

From 2004 to 2016, a total of 376 502 valid locations
were reported by the 271 tags deployed (Table 1;
Fig. 1). Tag reporting life ranged from 7 to 641 d
(Table 1). Following track filtering and interpolation,
a total of 55 803 daily loggerhead locations were
available. The number of daily locations available in
each month was highest from the summer through
the fall, which reflected the timing of tag deploy-
ments; most tags were deployed in the spring or sum-
mer (Fig. 2). Tagged loggerheads primarily occupied
the continental shelf from Long Island, New York,
south to Florida, with some individuals making off-
shore excursions, often in the vicinity of the Gulf
Stream (Fig. 1).

Simulation testing and method comparison

In simulated applications, the space-time geostatis-
tical mixed effects models outperformed the 4 alter-
native space use estimators. The space-time model
resulted in the lowest absolute error, and had the
highest percent overlap with the ‘true’ core use area
estimate (Fig. 3). Minimum convex polygons per-
formed similarly to the space-time model in terms of
estimating the size of the core use area, but resulted
in the highest absolute error of all methods applied.
On average, kernel density methods underestimated
the size of the core use area, but performed reason-
ably well in terms of absolute error (Fig. 3). The track
density and Markov chain estimates both performed
poorly in comparison with the other methods. While
the geostatistical mixed effects model did outperform
the other 4 approaches overall, in 4 of the 100 simu-
lations the predicted core use area was much larger
than the true core area (Fig. 3b). In these instances,
variation in the simulated seasonal fields was insuffi-
cient to estimate both the spatial and temporal vari-
ance parameters, resulting in uniform predictions
over space in each time step.

Differences were also apparent when the 5 meth-
ods were applied to the track of an individual logger-
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Fig. 1. Study area and reconstructed tracks from 271 large juvenile and adult loggerhead turtles tagged by 6 different tagging
programs in the western North Atlantic from 2004 to 2016. Tracks of individual turtles are indicated by different colors. Tag-
ging locations are indicated by black circles. The grey line denotes the 200 m bathymetric contour. DFO: Fisheries and Oceans
Canada; NEFSC: NOAA Fisheries Northeast Fisheries Science Center; CFF: Coonamessett Farm Foundation; VAQ:  Virginia
Aquarium & Marine Science Center; SCDNR: South Carolina Department of Natural Resources; SEFSC: NOAA Fisheries 

Southeast Fisheries Science Center
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head. Only the space-time geostatistical mixed ef -
fects model predicted a 50% core use area that
encompassed both known foraging (off New Jersey)
and overwintering areas (south of Cape Hatteras,
North Carolina; Fig. 4). Core use areas identified
using kernel density estimation and minimum con-
vex polygons excluded the overwintering area, and
that estimated using the Markov chain density
method excluded the foraging area. The core use
area identified by applying the track density estima-
tion method did include both foraging and overwin-
tering grounds, but the overwintering area was more
disjointed than that predicted using the space-time
geostatistical mixed effects model.

Relative densities of tagged loggerheads

Based on the fitted space-time geostatistical mixed
effects model, the overall predicted spatial distribu-
tion of tagged loggerheads was concentrated along
the US Atlantic shelf from central Florida to New Jer-
sey (Fig. 5). The predicted density of tagged logger-
heads remained relatively high across the shelf but

generally declined north of New Jersey and at the
shelf break. The areas with the highest overall pre-
dicted densities were off Cape Hatteras (North Car-
olina), Charleston (South Carolina), and Cape Cana -
veral (Florida). While high density regions did shift
between months, these 3 coastal locations supported
high densities of tagged loggerheads year-round.
The overall predicted distribution was similar to that
apparent from the reconstructed tracks (Fig. 1) but
filled in the spatial gaps in offshore areas (Fig. 5).

Estimated fixed effects parameters suggested that
variation in the spatial distribution over time was
slightly greater than that in space (Table 2), which
reflects the highly migratory behavior of logger-
heads. The predicted monthly random fields (Fig. 5)
indicated that tagged loggerheads were concen-
trated in continental shelf waters year-round but that
densities shifted seasonally.
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Fig. 2. Number of satellite tags (bars) deployed on 271 large
juvenile and adult loggerheads in the western North At-
lantic by month and region. The total number of daily loca-
tions available from tags deployed in all regions in each
month is also indicated (black line). GB: Georges Bank; 

MAB: Mid-Atlantic Bight; SAB: South Atlantic Bight

Fig. 3. Performance of 5 space use estimators applied to 100
simulated tracks generated as the realization of a latent spa-
tiotemporal point process. For each boxplot, the thick black
line in the middle represents the median, the top of the box
the first quartile, the bottom of the box the third quartile, the
whisker bars 1.5 times the interquartile range from the me-
dian, and the points are outliers. Individual panels represent
(a) the sum of absolute error values; (b) the error in the area
of the smallest region encompassing 50% of the resulting
probability distribution, which corresponds to the 50%
home range metric often used to identify core use areas; and

(c) percent overlap with that of the true core area
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Fig. 4. Predicted 50% core use area from 5 space use estimators (right panels) applied to a 12 mo track of a 74 cm (straight
carapace length) loggerhead sea turtle tagged in the mid-Atlantic in May of 2012 (left panel). The black line denotes the 200 m 

bathymetric contour.

Fig. 5. Overall (left panel) and monthly (right panels) log density of tagged loggerhead sea turtles per 40 km resolution grid
cell as predicted using a space-time geostatistical mixed effects model. Model predictions were based on daily locations of 271
large juvenile and adult loggerhead turtles tagged from 2004 to 2016. Predicted densities were scaled from 0 to 1 in each
month for comparison purposes. The key indicates the proportion of the predicted density included in each grid cell. In each
month, scale bars are consistent with the overall plot with the exception of the maximum value, which is indicated. The black
line denotes the 200 m bathymetric contour. White triangles in the overall panel indicate the location of Cape Hatteras, North 

Carolina; Charleston, South Carolina; and Cape Canaveral, Florida
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Monthly variation in the MAB was
indicative of northward migration to
known summer foraging grounds
along the shelf in the MAB in the
spring (March to May), with the
reverse southward migration to over-
wintering areas in the fall (November
to December). In the warmer spring
and summer months (May to Septem-
ber), predicted densities of tagged
turtles were highest in the shelf
waters from Maryland to New Jersey.
During cooler months (November to April), the high-
est densities in the MAB occurred on the shelf off of
Cape Hatteras, North Carolina.

Predicted densities south of Cape Hatteras were
not as seasonally variable and remained high in the
shelf waters from Florida to North Carolina in all
months (Fig. 5), which reflected the behavior of log-
gerheads tagged south of Cape Hatteras. Though a
subset of individuals tagged in the SAB did migrate
to foraging grounds in the MAB (Fig. 1), many
remained in the general vicinity of their tagging loca-
tion for the duration of tag transmission.

DISCUSSION

The effectiveness of spatial conservation measures
relies on an accurate description of a species’ space
use. Attempts to infer the relative intensity of space
use from satellite telemetry data are often confounded
by the inherently autocorrelated nature of the re-
ported locations (Fleming et al. 2015) as well as the
computational trade-offs associated with appropri-
ately accounting for autocorrelation. In this study, we
demonstrated that geostatistical mixed effects models
can be used to account for bias associated with
changes in the number of tag transmissions received
over time (Whitehead & Jonsen 2013). Al though our
approach did not explicitly model serial correlation
between reported locations, it can be used to account
for both spatial and temporal correlation at a broader
scale when analyzing large tracking datasets in a
computationally efficient manner. Using geostatistical
mixed effects models, we were able to predict the
monthly distribution and relative density of tagged ju-
venile and adult loggerhead sea turtles in the western
North Atlantic over the course of the year. By condi-
tioning estimates on space and time, we estimated
overall spatial variation in densities in a manner anal-
ogous to kernel density estimation, but in a predictive
rather than ad hoc fashion (Diggle et al. 2013).

Our results suggest that tagged loggerheads in -
habit the continental shelf along the US Atlantic from
Florida to North Carolina year-round but also high-
light the importance of summer foraging areas on the
mid-Atlantic shelf. Previous satellite tagging studies
have documented several different migration and
foraging strategies among large juvenile and adult
loggerheads in the US Atlantic (Mansfield et al. 2009,
Arendt et al. 2012a−c, Griffin et al. 2013), which the
monthly predicted distributions reflect. Some indi-
viduals remain in the SAB in thermally appropriate
habitat year-round, or make smaller-scale migrations
from nearshore summer habitat to warmer offshore
waters bordering the Gulf Stream during the winter
months (Hawkes et al. 2007, Arendt et al. 2012c,
Ceriani et al. 2012, Griffin et al. 2013). Others travel
between summer foraging areas in the MAB and
overwintering grounds south of Cape Hatteras,
North Carolina (Ceriani et al. 2012, Griffin et al.
2013). Areas where the shelf narrows, such as that
with the highest overall predicted density of tagged
loggerheads off Cape Hatteras, North Carolina, es -
sentially ‘funnel’ loggerheads and other species dur-
ing migrations between the MAB and SAB (Galuardi
& Lutcavage 2012, Griffin et al. 2013, Kneebone et al.
2014).

Seasonal concentrations suggested by the monthly
fields are also consistent with trends inferred from
other data sources. Loggerhead bycatch rates remain
relatively high south of 37° N year-round, but in -
crease in the shelf waters from Virginia to New Jer-
sey in the summer and fall as loggerheads migrate
into and out of the MAB, with the highest aggregate
encounter rates occurring off Cape Hatteras in the
fall and winter (Warden 2011, Murray & Orphanides
2013). Shipboard and aerial survey sightings indicate
loggerheads use habitats in the MAB from the sum-
mer into the fall but occur along the shelf from
Florida to North Carolina throughout the year
(TEWG 2009, Northeast Fisheries Science Center &
Southeast Fisheries Science Center 2011). Surveys of
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Parameter Estimate Standard error

Intercept (β0) −8.13 0.98
Marginal spatial standard deviation (σΩ) 3.22 0.20
Marginal spatiotemporal standard deviation (σE) 3.49 0.26
Spatial correlation range (ρ) 403 km 27.9 km

Table 2. Estimated parameters and standard errors from a space-time geosta-
tistical mixed effects model fitted to daily locations for 271 loggerhead sea tur-
tles satellite tagged in the western North Atlantic from 2004 to 2016. Note that 

ρ is empirically derived as described in ‘Materials and methods’
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inshore waters have also recorded fluctuations in
loggerhead sightings north of Cape Hatteras that
correspond to seasonal migration patterns (Epperly
et al. 1995).

While the seasonal occurrence of loggerheads in
the MAB has been well-documented, the extent of
the region’s importance to the broader western North
Atlantic population remains unclear. A preliminary
analysis of aerial survey data collected in the summer
of 2010 estimated that only 5% of the surveyed pop-
ulation occurred north of Cape Hatteras from June to
September (Northeast Fisheries Science Center &
Southeast Fisheries Science Center 2011). The analy-
sis accounted for regional variation in surfacing
behavior (based on percent surface time estimated
from 34 of the tags analyzed here), but the authors
recommended the collection of additional telemetry
data given the limited sample size and the large esti-
mated difference in median percent surface times
between the SAB (7%) and MAB (57%); estimates of
abundance derived from shipboard and aerial line
transect surveys are extremely sensitive to percent
surface time estimates (Buckland et al. 2015). Our
results suggest that the MAB foraging grounds may
support a larger proportion of the population, with
over 50% of the predicted relative density of tagged
loggerheads occurring north of Cape Hatteras from
June to October.

Our estimate is likely driven, at least in part, by the
selected weighting scheme. Given the absence of
data definitively indicating regional differences in
the overall abundance of loggerheads at the time of
tagging, we chose to weight tracks from turtles
tagged north and south of Cape Hatteras equally.
Alternative weighting schemes could have resulted
in either higher or lower regional density estimates.
Weighting of different data sources has been much
discussed in the fisheries stock assessment literature
(Richards 1991, Francis 2011, Maunder & Punt 2013,
Punt 2017), but there is little guidance available re -
garding weighting of telemetry datasets. The manage -
ment implications of the selected weighting scheme
certainly warrant further exploration, but were
beyond the scope of the analysis conducted here.

It is important to stress that our results are only per-
tinent to the tagged population, and are therefore not
necessarily reflective of relative abundance (Sippel
et al. 2015). The number of tags deployed in each
region was dictated by individual tagging programs,
which predominantly targeted known loggerhead
aggregation sites and migration corridors to maxi-
mize the efficiency of field operations (Fig. 1). While
the spatiotemporal modeling approach we applied

can be used to account for variation in the number of
transmissions received from satellite tags over time,
geostatistical approaches generally assume that the
sampling process is independent of the continuous
pro cess underlying discrete observations (Diggle et
al. 2010). For satellite telemetry data, this implies that
animals ‘sample’ the overall area of interest and
move between the resource-rich areas governing the
continuous distribution of relative densities. Though
multiple regions with suitable foraging or overwin-
tering habitats may exist, individuals tagged in a par-
ticular location may exhibit fidelity to specific areas
(Broderick et al. 2007). This could lead to oversam-
pling of certain regions when tagging efforts are not
distributed in proportion to abundance (Diggle et al.
2010).

Bias associated with the non-random nature of tag
deployment was evident in the predicted distribu-
tions and highlights the need to consider existing
knowledge of the spatial distribution of the popula-
tion when designing tagging studies (Sippel et al.
2015). The discrete high use areas predicted off
Charleston, South Carolina, and Cape Canaveral,
Florida, were associated with tagging locations.
Many of the loggerheads tagged in those regions
appeared to be highly resident, remaining in the
general vicinity of tagging for the duration of tag life
(Arendt et al. 2012a−c). The majority of loggerheads
tagged in the MAB were tagged in offshore shelf
waters north of the Chesapeake Bay during their
northward spring migration. Thus, loggerheads that
occur in nearshore areas in the MAB may have been
under-represented. Similarly, tags were not de -
ployed evenly among regions and years, and so we
were not able to examine inter-annual differences in
the high density areas identified here, which likely
vary over time (Kai et al. 2017). Despite the limita-
tions of the available dataset, the predicted distribu-
tion represents a broad-scale synthesis of satellite
tagging data available from in-water captures of
logger heads in the western North Atlantic, which is
supported by trends inferred from other data sources
as described above.

Here, our interest was the prediction of spatio -
temporal variation in the density of tagged logger-
heads, and so our application focused on the use of
geostatistical mixed effects models as a model-based
approach to spatial smoothing rather than on param-
eter estimation. However, models of this type have
also been shown to produce less biased, more precise
parameter estimates in other applications (Thorson et
al. 2015), making them a potentially valuable tool for
inferring relationships between environmental pro-
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cesses and seasonal shifts in relative densities (Ono
et al. 2016). In contrast to approaches used to indi-
rectly infer associations between environmental driv-
ers and conventional space-use estimators (Hooten et
al. 2013), the model-based framework we used is
well suited to directly link species distribution data
with environmental variables (Thorson et al. 2015),
which could be used as the basis for predicting the
probability of loggerhead presence in areas not rep-
resented during tag deployment. Using a model-
based approach confers the additional ability to
quantify uncertainty in parameter estimates and the
resulting predicted distributions, which may have
important ramifications if model predictions are used
as the basis for spatial management measures
(Maxwell et al. 2011). While our goal here was to
describe the overall spatial distribution of all logger-
heads tagged by the 6 programs, inclusion of individ-
ual-specific information in such models would allow
for the identification of variation in high density
areas between sexes, maturity states, and size classes
(Kai et al. 2017) to ensure that spatial conservation
measures encompass areas important to multiple life
stages. The models proposed are also compatible
with the types of models applied to estimate relative
densities from distance sampling data collected via
shipboard or aerial line transect surveys, providing a
logically consistent basis for integrating telemetry
data into predictions of space use based on existing
survey efforts (Royle et al. 2013).

It is important to consider how the choice of spatial
and temporal scales of interest may influence inter-
pretation when applying such models to satellite
telemetry data (Johnson et al. 2013). While the mod-
eling approach we used does not require gridding of
location data (Lindgren et al. 2011), we used a grid-
ded, predictive process approximation to reduce di-
mensionality and speed up computation (Banerjee
et al. 2008). Previous work suggests that estimates
based on a regular lattice of knots are generally ro-
bust, though the spacing of the selected grid limits
the scale of spatial inference (Banerjee et al. 2008).
We were interested in describing broad-scale
changes in the intensity of space use and so chose a
rather coarse discretization of space. In in stances
where fine-scale space use is of interest, grid spacing
should be sufficiently small to provide information at
the scale desired. Our selected grid cell size was
much larger than the mean error estimated for all Ar-
gos location classes (see the Supplement for error es-
timates), and so we chose to filter locations prior to
modeling densities to speed up computation. How-
ever, at small spatial scales this stepwise process may

lead to bias. Future research should explore the in-
clusion of observation models to directly estimate lo-
cation error within the models used here to address
the potential for bias related to the choice of spatial
scale.

Similarly, we chose to account for temporal varia-
tion by aggregating reported locations over a series
of discrete monthly time steps rather than explicitly
accounting for serial correlation in location estimates
by modeling movement directly. Marine animals
often undergo annual migrations to seasonal forag-
ing or nursery grounds (Galuardi & Lutcavage 2012,
Kneebone et al. 2014), meaning that autocorrelations
in telemetry data tend to be cyclical and persist over
long periods of time (Fleming et al. 2015). Thus, ac -
counting for correlation at a broader temporal scale
while also accounting for the latent spatial structure
of the data may be sufficient when the goal is to
describe large-scale space use. Though we chose to
predict densities on a monthly time step requested by
management groups, the time step selected could be
decided upon in a less arbitrary manner based on
inspection of autocorrelation functions or other diag-
nostics; future studies should investigate the implica-
tions of the selected time step on resulting estimates
of space use. Alternatively, variation in time could be
formulated in terms of behavior by incorporating a
random effect for behavioral state (e.g. foraging or
migrating), which could be informed via switching
state-space (Jonsen et al. 2007) or hidden Markov
models (Pedersen et al. 2011). However, when fine-
scale habitat use is of interest, explicit modeling of
both the movement and observation process (i.e.
Argos geolocation error) would likely be required to
more properly propagate uncertainty when inferring
relationships with environmental drivers. Though
computationally more intensive, our approach could
be extended to model movement directly in a fashion
similar to that applied by Johnson et al. (2013).

Our results represent a broad-scale synthesis of
loggerhead satellite tagging data available from mul-
tiple research programs in the western North Atlan -
tic. The predicted monthly distributions indicate that
tagged loggerheads occur in the highest densities in
shelf waters year-round, where the potential for over-
lap with human activities is high (Lewison et al.
2014). The high density areas identified here are
based on over 10 yr of satellite tagging data, and rep-
resent the relative distribution of tagged loggerheads
that may be expected on average in a given month.
While this is certainly informative for developing
spatial management strategies, a more mechanistic
understanding of the spatiotemporal patterns de -
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scribed here could be used to better predict where
and when loggerheads would be expected to occur in
response to changes in environmental conditions in a
particular year. In addition to directly informing
management actions, this information could also be
used to optimize monitoring efforts (e.g. by informing
the timing of aerial or shipboard surveys) and miti-
gate potential overlap between loggerheads and
human activities.
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